СЕЙСМОСТОЙКОСТЬ И БЕЗОПАСНОСТЬ СПЕЦИАЛЬНЫХ СООРУЖЕНИЙ

А.В.СОЛОВЬЁВ кандидат технических наук, доцент, заведующий кафедрой «Металлические и деревянные конструкции» Самарского государственного технического университета,

И. А. ВАСЮКОВ

инженер проектировщик ООО «Доппельмайр Раша»

УДК 625.1/5

ПРОБЛЕМЫ **ПРОЕКТИРОВАНИЯ КАНАТНЫХ ДОРОГ** В СЕЙСМООПАСНЫХ РАЙОНАХ **РОССИЙСКОЙ ФЕДЕРАЦИИ**

В статье рассматриваются вопросы проектирования канатных дорог, связанные с учётом сейсмических воздействий в соответствии с действующей нормативной документацией Российской Федерации. Представлен анализ процесса проектирования подвесных пассажирских канатных дорог в условиях недостаточной нормативной базы.

Ключевые слова: канатные дороги, проектирование в сейсмически опасных районах, максимальное расчётное землетрясение, нагрузки и воздействия.

ВВЕДЕНИЕ

Строительство современных подвесных канатных дорог является неотъемлемой частью развития горнолыжного спорта, горного туризма, а также транспортной инфраструктуры современных городов.

Обычно канатная дорога представляет из себя линейный объект, включающий такие сооружения, как нижняя станция канатной дороги (НСКД), верхняя станция канатной дороги (ВСКД) и промежуточные опоры с роликовыми балансирами, поддерживающими канат (рис. 1, 2). Проектирование данных объектов капитального строительства сопряжено с рядом трудностей и «серых зон» в современной нормативной литературе нашей страны. Большинство горнолыжных районов страны располагается в сейсмически опасных районах, поэтому одной из первостепенных задач является учёт сейсмического воздействия на конструкции

канатной дороги и сопутствующих сооружений.

Процесс проектирования канатной дороги можно разделить на 3 принципиальных этапа:

- проектирование оборудования канатной дороги (конструкции станций, конструкции промежуточных опор с балансирами, канат с подвесным составом);
- проектирование фундаментов и других строительных конструкций линейного объекта (сооружений, относящихся к видам сооружений повышенного уровня ответственности);
- проектирование зданий и сооружений, входящих в инфраструктуру линейного объекта.

Первый этап проектирования, как правило, выполняется иностранными специалистами, ввиду того, что в Российской Федерации нет производителей больших подвесных пассажирских канатных дорог. Производители оборудования ведут проектирование согласно европейским нормам, что вносит некоторые сложности в процесс согласования данных решений с Российским законодательством.

Второй и третий этапы проектирования выполняются в России в соответствии с отечественной нормативной и законодательной базой.

ПОСТАНОВКА ПРОБЛЕМЫ

Согласно Градостроительному кодексу РФ ст.48.1 ч.1 п.10.2, подвесные канатные дороги относятся к особо опасным и технически сложным объектам. Также, согласно Федеральному закону N^2 116 «О промышленной безопасности опас-

50 www.seismic-safety.ru

Рисунок 1 — Промежуточные опоры канатной дороги

Рисунок 2 — Верхняя станция канатной дороги (ВСКД)

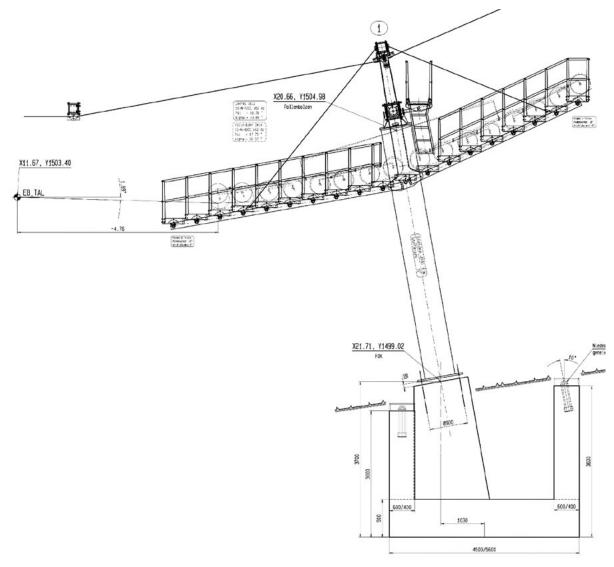


Рисунок 3 — Промежуточная опора канатной дороги с фундаментом (общая схема)

ных производственных объектов» приложение 1 п.3 и приложение 2 п.6, 1, подвесные канатные дороги относятся к III классу опасности производственных объектов. В связи с этим, к канатным дорогам применяются повышенные требования по прочности и долговечности их конструкций. Более того, повышенные требования применяются и к сооружениям инженерной защиты склонов. Проектные решения подвесных канатных дорог в обязательном порядке проходят Главгосэкспертизу.

На данный момент в Российской Федерации нет действующих норм по проектированию сооружений подвесных канатных дорог. Данный факт приводит к неоднозначности трактовок действующих норм проектирования в отношении канатных дорог. В частности, отсутствуют указания по определению расчётных сочетаний нагрузок для аварийных режимов работы канатных дорог, и коэффициенты сочетания, применяемые в данных режимах. Для определения расчётных сочетаний приходится руководствоваться имеющимися требованиями СП 20.13330.2011 «Нагрузки и воздействия», либо, в отдельных случаях, составлять специальные технические условия и утверждать их в Минстрое России.

Главным камнем преткновения на данный момент является учёт сейсмических нагрузок. В действующем СП

14.13330.2014 «Строительство в сейсмических районах» нет однозначного указания по канатным дорогам. В частности, в таблице 3 канатные дороги можно отнести к двум пунктам: 2 (другие здания и сооружения, разрушения которых могут привести к тяжёлым экономическим, социальным и экологическим последствиям) или 3 (другие здания и сооружения). Выбор пункта в данной таблице существенным образом влияет на расчёт. Если отнести канатные дороги к пункту 3, то в расчётах необходимо учитывать сейсмические нагрузки уровня ПЗ (Проектное Землетрясение) с коэффициентом $K_0 = 1$. Однако, если отнести к пункту 2, то в расчётах необходимо учитывать сейсмические нагрузки уровня МРЗ (Максимальное Расчётное Землетрясение) с коэффициентом $K_0 = 1,5$.

При учёте сейсмических нагрузок уровня MP3 СП 14.13330.2014 подразумевает использование пространственных расчётных динамических моделей, что приводит к значительным усложнениям расчётов. Ситуацию усложняет и то обстоятельство, что производителями оборудования подвесных дорог являются зарубежные фирмы, не желающие делиться техническими подробностями своего оборудования. В конечном итоге, обоснованность этих усложнений под большим вопросом, так как расчётной схемой стальных опор канатных дорог является классическая

52 www.seismic-safety.ru

консольная расчётная динамическая схема (рис. 3). Много вопросов возникает и по части сооружений инженерной защиты склонов, для которых нет чётко прописанных методик учёта сейсмических нагрузок, но которые являются крайне чувствительными к землетрясениям.

Очевидно, что учёт сейсмических нагрузок уровня MP3 ведёт к увеличению объёмов проектных работ и их стоимости, усложнению принимаемых технических решений. В конечном счёте, всё это значительно повышает стоимость капитального строительства. Как правило, мнения заказчиков и Главгосэкспертизы по поводу учёта MP3 расходятся. Главгосэкспертиза настаивает на учёте сейсмических нагрузок уровня MP3, заказчик же не понимает, зачем тратить больше средств в ситуации, когда нормы допускают возможность этого не делать.

выводы

Для повышения безопасности и качества проектирования канатных дорог в сейсмоопасных районах Российской Федерации представляются необходимыми следующие действия:

- проведение исследований в области влияния сейсмических воздействий на конструкции канатных дорог;
- внесение изменений в СП 14.13330.2014, позволяющих однозначно относить канатные дороги к тому или иному пункту;

- проведение исследований в области влияния сейсмических воздействий на инженерные сооружения защиты склонов и на устойчивость самих склонов и создание методики их расчёта;
- дополнение СП 14.13330.2014 в части проектирования инженерных сооружений в сейсмических районах;
- составление свода правил по проектированию подвесных пассажирских канатных дорог.
- В заключение хотелось бы отметить, что на территории Евросоюза действуют несколько Еврокодов, регламентирующих проектную деятельность в данной сфере:
- EN 12930 Safety requirements for cableway installations designed to carry persons Calculations (Подвесные канатные дороги для транспортировки людей. Требования безопасности. Расчеты);
- EN 13107 Safety requirements for cableway installations designed to carry persons Civil engineering works (Подвесная канатная дорога для транспортировки людей. Требования безопасности. Гражданские инженерные работы).

Учитывая многолетний европейский опыт проектирования и строительства канатных дорог, данные нормативные документы могли бы быть взяты за основу для разработки нормативной базы в данной области на территории Российской Федерации.

Литература

- 1. Бирбраер А.Н. Расчёт конструкций на сейсмостойкость. СПб.: Наука, 1998. 255 с.
- 2. Уздин А.М., Сандович Т.А., Аль-Насер-Мохомад Самих Амин. Основы теории сейсмостойкости и сейсмостойкого стро-

ительства зданий и сооружений. Санкт-Петербург: Изд-во ВНИИГ им. Б.Е.Веденеева, 1993. 176 с.

3. Окамото Ш. Сейсмостойкость инженерных сооружений: Пер. с англ. – М.:Стройиздат, 1980. – 342 с., ил. – Перевод изд.: Introduction to earthquake engineering / Shunzo Okamoto.

Материалы хранятся по адресу: 443100, г. Самара, Самарский государственный технический университет, ул. Молодогвардейская, 244, ФПГС, кафедра «Металлические и деревянные конструкции»

SOLOVIEV A., candidate of technical sciences, assistant professor, head of the department «Steel and wooden constructions» of Samara State Technical University,
VASIUKOV I., deputy engineer LLC «Doppelmayr Russia»

PROBLEMS OF DESIGNING ROPE ROADS IN SEISMIC FIELD DISTRICTS OF THE RUSSIAN FEDERATION

Abstract

The article observes questions of designing of ropeways, connected with estimating of seismic actions with a respect to codes of Russian Federation. Analysis of designing process

of aerial people carrying ropeways in lack codes conditions presented.

Keywords: ropeways, designing in seismic areas, maximum design earthquake, loads and actions.

References

- 1. Birbraer A.N. Raschet konstruktsii na seismostoikost.'St. Petersburg: Nauka, 1998. 255 s. 2. Uzdin A.M., Sandovich T.A., Al-Naser-Mo-
- homad Samih Amin. Osnovy teorii seismostoikosti i seismostoikogo stroitelstva zdaniy i sooruzhenii. S.-Petersburg: Izd-vo VNIIG im. B.E. Vedeneeva, 1993.176 s.
- 3. Okamoto Sh. Seismostoikost' inzhenerniyh sooruzhenii: Per. s angl. M.: Stroizdat, 1980. 342 s., il. Perevod izd.: Introduction to earthquake eengineering / Shunzo Okamoto.

Для цитирования: Соловьев А. В., Васюков И. А. Проблемы проектирования канатных дорог в сейсмоопасных районах Российской Федерации // Сейсмостойкое строительство. Безопасность сооружений. 2017. № 6. С. 50-53.

For citation: Solovev A. V., Vasiukov I. A. Problems of designing rope roads in seismic field districts of the Russian Federation // Earthquake engineering. Constructions safety. 2017. № 6. P. 50-53.